Overview of Thales Alenia Space Italia
GNSS Products & Activities

7th Multi-GNSS Asia (MGA)
Industry Seminar

LIVIO MARRADI | Thales Alenia Space Italia
Thales operates as a single organisation, drawing on the talent and technologies of the entire Group to act as prime contractor, systems integrator, equipment supplier and value-added service provider on both civil and military programmes.
Thales plays a major role in space systems through two joint ventures with Finmeccanica: Thales Alenia Space and Telespazio serving satellite operators, space agencies and defence customers.

- Helping them to design, develop and deploy orbital infrastructure, systems, ground segments and services
- For telecommunications, Earth observation, navigation and scientific missions

Telecommunications
Thales Alenia Space is prime contractor for all telecommunication satellite constellations, including Iridium Next, Globalstar, O3b

Earth observation
Civil, military, dual-use
Meteosat 1st, 2nd & 3rd generations, Helios, CSO, Pleiades, Cosmo SkyMed, Sentinels

Orbital infrastructure
Thales Alenia Space has supplied 50% of the pressurised volume of the International Space Station

Science
Thales Alenia Space is prime contractor for ExoMars, Europe’s first mission to land on Mars

Navigation
Space and Ground Segments
EGNOS, Galileo
Equipment & Infrastructures
Space and Ground GNSS Product Lines

GNSS Ground Reference Receivers
- EGNOS V2/V3 RIMS
- GALILEO GRCN IOV/FOC
- IONO MONITORING RECEIVERS

GNSS Spaceborne Receivers
- LAGRANGE-2G REAL-TIME NAVIGATION LEO/GEO/GTO
- GNSS RADIO OCCULTATION INSTRUMENT
- GNSS REFLECTOMETRY

GNSS User Applications
- TEST USER RECEIVER
- RAIL USER TERMINAL
- SW RADIO RECEIVER

GALILEO NSGU Navigation P/L
- NSGU IOV/FOC
- ENSGU / LNSGU new generation
Ground Reference Receiver Products

EGNOS RIMS-B

Key features:
- 16 channels GPS L1/L2
- 12 channels GLONASS L1
- 6 channels GEO L1
- All in view acquisition and tracking;
- Provides Raw Data, Navigation Message, Signal Quality and Signal Status Indicators, Health Status;
- Provides Timing Synchronisation (PPS);
- 19”, 3 PU (133 mm height) sub-rack plus antenna;
- Provides raw data to the EGNOS processing chain

Domains for application:
- Reference receiver for EGNOS SBAS Ground Segment

Maturity on the market:
- > 40 recurrent units operational on EGNOS sites worldwide

GALILEO GRCN Rx for IOV/FOC

Key features:
- Galileo receiver for OD&TS, IPF and PTF chains
- Processing of 16 GALILEO satellites L1, E5, E6 except PRS, 12 channels GPS L1/L2
- Raw measurements generation (code, carrier phase, C/No, Doppler, code-carrier coherency indicators) and validity flags from the E5a-b, E5 (AltBOC), E6 and L1 signals, for each Galileo satellite in view;
- Galileo PTF station receiver and automatic calibration mode
- Interference mitigation through pulse blanking
- Navigation Data Messages output
- PPS signal generation

Domains for application:
- Reference Rx for Galileo Ground Mission Segment

Maturity on the market:
- 40 GRCN Units delivered and operational
- 4 new generation GRCN-NG Rx delivered
- 4 PTF-C Calibrators
Ground Reference Receiver Products

RIMS-E/V3 New Generation Rx

Key features:
- RIMS New Generation Rx capable of providing raw data on the following signals:
 - Baseline provision
 - GPS L1C/A, L2P(Y), L2CM/L2CL, L5
 - GALILEO E1, E5a
 - GEO L1, L5
 - Expandability provision
 - GPS L1C
 - HEO L1, L5
 - GLONASS L1OC, L5OC
 - BeiDou B1C, B2a

- Antenna: interface to COTS geodetic reference antennas or dedicated Dual-Tracking Antenna (DTA) for increased performance in MP and Interference

Domains for application:
- Reference receiver for Ground Stations Infrastructure

Maturity on the market:
- Qualified unit Q2 2016

DUAL TRACKING ANTENNA Rx (DTA)

Key features:
- Based on TAS-I receiver platform
- The DTA concept is based on the tracking/acquisition of the GNSS satellites at any elevation angle dividing the field of view in two different sides (Low Elevation Antenna - LEA, High Elevation Antenna - HEA)
- Dedicated measurement chains and appropriate combination algorithms allow to mitigate the errors affecting the measurements for multipath and interferences and minimizing their impact

Domains for application:
- Reference receiver of ground reference stations
- Antenna/Receiver system for Airport GBAS Stations

Maturity on the market:
- Demo Proto available
- Qualified Unit Q2 2016
Multi-Constellation / Multi-Frequency Ground Receivers

COMMON PLATFORM SCALABLE ARCHITECTURE
- Designed for Ground Station Infrastructures & GNSS Networks
- Expandable to All-constellation / All-signals (GPS/GAL/GEO/GLO/BEI)
- State-of-Art Performance
- Robustness to environment for usage in harsh sites
 - Interference: NB, WB, Pulse, Extreme
 - Multipath: up to 6dB D/U
 - Scintillation: extension to Equatorial/Polar Regions
- 11+1 Multicorr/Channel for EWF function (local / central)
- Digital I/Q samples output for RF Env Monitoring (RFEM)
- Interface to COTS geodetic antenna or DTA technology
- Adaptable external data interface
- Security Features
- Qualified to DO-254/278 standards
- TAS-I commitment to continuous Rx technology evolution
GISMO
Ionospheric Monitoring Receiver

FLEXIBILITY & CONFIGURABILITY
- Dual Frequency, Dual Constellation Signal Tracking
 - GPS/GAL: L1CA, L2c, L5/E5a
 - Tracking Loops Configurability (DLL/PLL BW, code/phase discriminators)
- Expandability: Channels expandability by adding boards in the Rx

ROBUSTNESS
- Tracking Loops: PLL, FLL-aided-PLL, Kalman Filter PLL
- Bit grabbing capability: Storage capability and post-processing I/Q data

OBSERVABILITY
- Rate: Meas Rate configurable: 50, 20, 1 Hz (SNR and Carrier Phase)
- Clock: Ultra stable OCXO: spectral purity (phase noise) and short term (Allan deviation)
- Ionospheric Products: S4, Sigma-Phi, TEC, ΔTEC, Iono Flag
- Environmental Products: CCC Iono Free, Cycle Slip Flag, Interf. & MP Flags
- Data Output: Rinex, ISMR, Binary High Rate Files

EQUATORIAL REGIONS AFFECTED BY IONO

IONO MONITORING STATIONS FOR MODELING & FORECAST TO USERS

GISMO Reference Receiver

MISW, MONITOR, BELS Stations
Space-borne GNSS Receivers

DUAL-FREQ GPS POD
(LAGRANGE & LAGRANGE-2G)

- 12 GPS / GLO L1+L2 channels
- Precise Orbit Determination (POD by ground post processing)
- MIL-STD 1553B data I/F
- Mass 5 kg Power: 30 Watt
- Dimensions: 250 x 164 x 190 mm
- Navigation output states:
 - Position @ 1 Hz - Velocity @ 1 Hz
 - Time @ 1 Hz
 - Raw Data L1/L2 measurements @ 1Hz
- Maturity: 18 units produced for several missions

NEW LAGRANGE-2G SDR: ready Q3 2016
- SW Defined Radio based on FPGA
- In-Flight reconfiguration capability
- GPS L1/L2P(Y)/L2C, GAL E1

GNSS RADIO OCCULTATION INSTRUMENT
(ROSA)

- Spaceborne Instrument to sound the Atmosphere
- Real-time NAV and OBS measurements for meteorology and climatology science
- GNSS signals on L1 and L2
- MIL-STD-1553 communication interface
- Up to Two (velocity, anti-velocity) Radio Occultation Antenna with maximum gain at atmosphere layer from 0 to 100 km
- NAVIGATION MODE: real-time navigation
- OBSERVATION MODE: occultation measurements
 - 16 DFC Navigation Mode
 - 8 Navigation DFC + 8 DFC Observation
- OUTPUT:
 - Pseudorange, carrier phase, SNR @ 1-10-50 Hz (Closed Loop)
 - I/Q samples and Doppler Model @ 100 Hz (Open Loop)
 - 3 missions (ISRO / ASI / CONAE)
Combined Ground/Space Iono Monitoring

GNSS-RO FROM SPACE A HIGH ACCURACY PROFILING TECHNIQUE

- Long Term Stability
- All-weather operation, Global 3D coverage
- High Vertical Resolution

- Exploit “co-located ground/space” observations
- Relative strengths of different measurements
- Space RO provides good vertical resolution combined with ground based ionospheric tomography
- Physical modeling of neutral atmosphere using ground-based and radio-occultation space data
Earth Observation by GNSS Reflectometry

EARTH OBSERVATION FROM SPACE FOR AGRICULTURE

- Measure from satellite bio-geophysical quantities: soil moisture, soil roughness and plant water content
- GNSS Reflectometry based on interferometric measurement of the reflected signal vs. the direct signal
- Allow retrieval of arrival time delay and of properties of the reflecting surface
- GNSS-R implements a bistatic observation at L band
- Low cost, increasing number of GNSS transmitters, many specular points on earth (high coverage), L-band penetrates into vegetation and soil
MicroSatellite R&D for GNSS Remote Sensing

GNSS Remote Sensing Application (internal R&D):

- **GNSS RADIO OCCULTATION**: global meteorological predictions & space weather studies
- **GNSS REFLECTOMETRY**: land, vegetation and ocean studies

MICROSATELLITE BY ADDITIVE MANUFACTURING TECHNOLOGY (1.6m x 1m, 100Kg)
RAIL Safety-Critical GNSS User Terminal

- RAIL User Terminal based on GNSS Rx + IMU
 - Virtual Balise
 - Enhanced Odometry
 - Train Integrity (Train Head-Tail)

- Output Traveled Distance + Speed to Train On-Board Guidance System

- CENELEC Safety-Integrity-Level: SIL-2 (THR < 1e-7 / hr)

- Confidence level with TAS-I “Along-Track Protection Level” algorithm provides error over-bound

- The confidence level is the range around the provided distance (velocity) within which the true distance (velocity) lays with a probability of 5σ

FIELD TESTS ON HIGH-SPEED LINES IN SPAIN (MADRID-BARCELONA)
TAS-I GRAIL USER TERMINAL AND PEGASUS RECEIVER
Thales Alenia Space Research & Technology Activities

GNSS Receivers

<table>
<thead>
<tr>
<th>Needs</th>
<th>Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>- Advanced Antennas (simple DBF)</td>
</tr>
<tr>
<td>Safety Critical</td>
<td>- RF Direct Sampling & DDC</td>
</tr>
<tr>
<td>Space</td>
<td>- GNSS waveforms (SCA-like architectures)</td>
</tr>
<tr>
<td></td>
<td>- Algorithms for robust tracking, adaptive filtering, hybridization, confidence bounds</td>
</tr>
<tr>
<td></td>
<td>- GNSS Remote Sensing techniques</td>
</tr>
</tbody>
</table>

1. Multi-constellation Multi-Frequency scalable architecture
2. Robustness to RF environments
3. Performance
4. Integrity & Continuity
Collaborations

• **TESTS IN NAVIS HUST CENTER (HANOI) IN THE FRAME OF BELS PROGRAM:**
 – TASI will install a GISMO Iono Receiver in Hanoi to perform measurements and analyse performance in presence of scintillation within this region

• **TAS-I READY TO COLLABORATE WITH SOUTH EAST ASIA INSTITUTIONS** in the fields of GNSS Equipment, Technologies and Applications related to:
 – GNSS Ground Infrastructures
 – Ionospheric Monitoring Networks
 – Remote Sensing by use of GNSS signals
 – Rail Safety-Critical Applications

• **TAS-I READY TO HOST RESEARCH STUDENTS FOR STAGE PERIODS IN ITALIAN SITES**
LIVIO MARRADI
Thales Alenia Space Italia
Via E. Mattei 1, Gorgonzola (Milano)
E-MAIL: livio.marradi@thalesaleniiaspace.com
PHONE: +39 0225075361